

DAILY NEWS

ANALYSIS

3rd January

Explained

1. Assam tribal body rejects GoM proposal to grant ST status to six OBC communities
2. Transforming a waste-ridden urban India
3. Energy transition will need more than chasing sun or the wind
4. 35% big Projects issues due to land acquisition
5. How rice farmers can cut methane and make money out of it

Playlist Link:

What to Read: <https://bit.ly/3FYdutC>

Daily News Analysis: <https://bit.ly/4ge9BgF>

www.nextias.com

DELHI CENTRE:
Vivekananda House
6-B, Pusa Road, Metro Pillar No. 111,
Near Karol Bagh Metro
New Delhi-110060
Phone: 8081300200

DELHI CENTRE:
Tagore House
27-B, Pusa Road, Metro Pillar No. 118,
Near Karol Bagh Metro
New Delhi-110060
Phone: 8081300200

DELHI CENTRE:
Mukherjee Nagar
637, Banda Bahadur Marg,
Mukherjee Nagar,
Delhi-110009
Phone: 9311667076

PRAYAGRAJ CENTRE:
13A/1B, Tashkand Marg,
Civil Lines, Near Hyundai
Showroom, Prayagraj,
Uttar Pradesh-211001
Phone: 9958857757

JAIPUR CENTRE:
Plot No. 6 & 7, 3rd Floor,
Sree Gopal Nagar,
Gopalpura Bypass,
Jaipur-302015
Phone: 9358200511

EXPLAINED

1. ASSAM TRIBAL BODY REJECTS GOM PROPOSAL TO GRANT ST STATUS TO SIX OBC COMMUNITIES

About to News

CONTEXT: This article examines the legal and political opposition by Assam's established tribes against granting Scheduled Tribe status to six OBC communities, citing violations of the **Lokur Committee** criteria. It highlights concerns over the dilution of reservation quotas and the potential loss of political representation for existing tribal groups under a proposed "three-tier" classification system.

1. The Core Conflict: Who is a "Tribe"?

The **Coordination Committee of Tribal Organisations of Assam (CCTOA)**, representing 14 established tribes (like the Bodos, Misings, and Karbis), is opposing a government plan to grant **Scheduled Tribe (ST)** status to six Other Backward Classes (OBC) communities.

The Six Aspirant Communities:

1. Koch-Rajbongshi
2. Chutia
3. Matak
4. Moran
5. Tai Ahom
6. "Tea Tribes" (Adivasis)

The Government's Proposal (Nov 2025)

A **Group of Ministers (GoM)** suggested a new "three-tier" classification to satisfy all parties:

- **ST (Plain):** Existing plains tribes.
- **ST (Hill):** Existing hills tribes.

ST (Valley): A new category specifically for these six communities.

2. The 5 Legal & Historical Arguments

The CCTOA's rejection is based on specific constitutional and historical precedents that are essential for students to understand.

A. The "Lokur Committee" Criteria (1965)

- The CCTOA argues these six groups do not meet the five-fold criteria established by the **Lokur Committee** for ST status:

- Indications of primitive traits.
- Distinctive culture.
- Geographical isolation.
- Shyness of contact with the community at large.
- Backwardness.

B. The "Mainstream" Argument

- The CCTOA asserts that groups like the **Tai Ahoms** and **Chutiyas** have historically been part of the "mainstream" Assamese social fabric and were not identified as tribes in the **1947 Joint Report** (Bordoloi-Thakkar Sub-Committee) or the 1950 Constitution Order.

C. The SC vs. ST Reclassification Issue

- A major legal hurdle mentioned is that some of these groups (like sections of the Koch-Rajbongshi) are already classified as **Scheduled Castes (SC)** in other states (e.g., West Bengal). The CCTOA argues that a community cannot be "reclassified" as ST for "political expediency."

D. The 50% Reservation Cap

In the landmark **Indra Sawhney (1992)** case, the Supreme Court capped total reservations at **50%**.

- **Assam's Current Reality:** Already at **59%** (including EWS).
- **The Fear:** Adding these six large communities could push the quota beyond **70%**, which the CCTOA claims would be struck down by courts, potentially endangering the entire reservation system.

E. The "Proportionate Share" Fear

- Reservation is often based on population size. If six massive communities join the ST list, the "existing" tribes fear their slice of the cake (seats in colleges and jobs) will shrink significantly as they are forced to compete with much larger, more "advanced" groups.

3. Political Stakes: It's Not Just About Jobs

The article highlights that the primary driver isn't just education or jobs—it's **political power**.

- **The Issue:** OBCs do not have reserved seats in the **State Assembly** or **Panchayats**.
- **The Goal:** By gaining ST status, these six communities would gain access to reserved political constituencies.

The Threat: Existing tribes believe this will lead to the "political destruction" of their representation at every level, from local village councils to the **Lok Sabha**.

2. TRANSFORMING A WASTE-RIDDEN URBAN INDIA

About to News

By Akshay Rout is former Director General, Swachh Bharat Mission

This article outlines India's strategic transition from a linear to a circular urban waste management model, driven by national philosophies like **Mission LiFE** and international climate commitments. It details the challenges of managing diverse waste streams for a rapidly urbanizing population while highlighting collaborative solutions and new regulatory frameworks, such as the **2025 C&D Waste Rules**, aimed at achieving garbage-free cities.

I. Global Context and National Philosophy

The movement to transform waste management is driven by international commitments and a specific Indian philosophy.

- **COP30 (Belem, November 2025):** At this United Nations summit, host country Brazil placed waste at the center of the climate agenda.
- **No Organic Waste (NOW):** A global initiative launched to commit funds toward cutting methane emissions.
- **Mission LiFE (Lifestyle for Environment):** Introduced by India at COP26 (Glasgow, 2021), this concept promotes “deliberate utilization” instead of “mindless and destructive consumption.”

The Shift: The goal is to move from a **linear model** (take-make-dispose) to a **circular model**, where waste is treated as a valuable resource.

II. The Scale of the Urban Crisis

Urbanization in India is an irreversible reality, but it brings a massive “waste burden” that threatens public health and the economy.

- **Current and Future Projections:**
 - **By 2030:** Indian cities are estimated to generate **165 million tonnes** of waste annually, emitting **41 million tonnes** of greenhouse gases.
 - **By 2050:** As the urban population reaches **814 million**, the waste burden could rise to **436 million tonnes**.
- **National Targets: * Garbage Free Cities (GFC) 2026:** Achieving this is described as an “existential necessity.”

SBM Urban 2.0: Currently, about **1,100 cities** and towns are rated free of dumpsites. The goal is to bring all **5,000 cities** and towns into the circular economy model.

III. Sector-Specific Waste Management

Waste is categorized into three main streams, each requiring a different technological and regulatory approach.

1. Organic and Municipal Waste

- **The Good News:** More than **50% of municipal waste** is organic.
- **Processing:** This is managed through composting or **Bio-methanation** plants.

Energy Recovery: **Compressed Biogas (CBG)** plants convert wet waste into green fuel, while complete combustion can generate electricity.

2. Dry Waste and Plastics

- **The “Demon”:** Plastic is the toughest challenge because it is not always recyclable and threatens ecosystems.
- **Dependency:** Success depends on **source segregation** at the household level and the expansion of **Material Recovery Facilities**.
- **Industrial Use:** Non-recyclable dry waste is processed into **Refuse Derived Fuel (RDF)** for the cement industry.

3. Construction and Demolition (C&D) Waste

- **Annual Volume:** India generates **12 million tonnes** of C&D waste per year.
- **The Problem:** Unauthorised dumping on roadsides causes significant urban pollution.

Regulatory Timeline: While the 2016 rules exist, the new **Environment (Construction and Demolition) Waste Management Rules, 2025** will take effect on **April 1, 2026**. These rules will levy charges on high-volume waste generators.

IV. Wastewater and Resource Security

Circular management also includes the “blue” thread of wastewater.

- **Water Missions:** Programs like the **Atal Mission for Rejuvenation and Urban Transformation (AMRUT)** and the **Swachh Bharat Mission (SBM)** link water security to faecal sludge management.

Strategic Reuse: Because India's water stock is inadequate, treated wastewater must be recycled for agriculture, horticulture, and industrial purposes.

V. Barriers to Success

Achieving a circular economy is hindered by several structural and social hurdles:

Category	Specific Hurdles
Logistics	Poor source segregation, collection, and processing.
Market	Recycled products face quality issues and financial feasibility challenges.
Policy	Extended Producer Responsibility (EPR) is not yet applied to all dry waste categories; lack of “tracing and tracking” for C&D waste.
Institutional	Municipalities face resource shortfalls; need for better inter-departmental coordination and penalty systems.
Social	In a consumerist society, the first “R” (Reduce) and second “R” (Reuse) are difficult to achieve.

VI. Collaborative Solutions

Recent initiatives show a path forward through cooperation:

- **National Urban Conclave:** A recent meeting in New Delhi where policymakers and industry leaders deliberated on urban rejuvenation.
- **Cities Coalition for Circularity (C-3):** An Indian initiative endorsed by Asia-Pacific nations in Jaipur to share expertise across the region.

The Final Pillar: The ultimate goal is to make citizens partners in the movement by helping them understand the “profit” and the “cause” behind the three Rs: Reduce, Reuse, Recycle.

3. ENERGY TRANSITION WILL NEED MORE THAN CHASING SUN OR THE WIND

About to news

CONTEXT: The article argues that India's energy transition has shifted from a generation challenge to a structural one, requiring urgent reforms in power distribution (discoms) and wholesale market design. It emphasizes that achieving a green grid depends on moving away from volumetric sales models toward automated smart technologies and centralized economic dispatch to manage renewable variability.

1. The Core Shift: From Generation to Integration

- India has successfully addressed the initial hurdle of building capacity. With solar and wind installations exceeding **180 gigawatts**, renewables are now among the lowest-cost generation sources. However, the system is currently “constrained” by its inability to utilize these “green electrons” efficiently. The bottleneck has shifted from **building** to **managing** the grid.

2. The Distribution Bottleneck (Discoms)

Distribution companies (discoms) are the central actors in this transition, but they face systemic financial and operational stress:

- **AT&C Losses:** Aggregate Technical and Commercial losses remain high at approximately **16%**.
- **Revenue Models:** Discoms rely on a **volumetric model** (selling more units = more money). Renewable adoption and energy efficiency reduce sales, threatening their ability to cover fixed costs.
- **Cross-Subsidization:** Commercial and industrial (C&I) customers pay higher tariffs to subsidize households and agriculture. When C&I customers move to rooftop solar or “open access” (buying power elsewhere), discoms lose their high-margin revenue while still being obligated to serve low-paying customers.
- **The “Backup” Dilemma:** Under net metering, consumers use the grid as a free “battery,” drawing power at night but not fully compensating discoms for maintaining the infrastructure that makes that backup possible.

3. Retail Reform: Smart Technology and Tariffs

To bridge the gap between supply variability and consumer demand, the article proposes a transition to a modern grid foundation:

- **Time-of-Day (ToD) Tariffs:** India has mandated price signals that change based on the time of day. Currently, **49 million smart meters** are installed to support this.
- **Automation over Manual Response:** Price signals alone are insufficient because humans cannot manually manage every appliance. The solution is **Smart Technology**:
 - Smart thermostats for cooling.
 - Smart EV charging.
 - Appliance-level automation (smart plugs/switches).
- **Flexibility:** Automated demand response can manage short-duration peaks more cost-effectively than building new grid networks or massive storage systems.

4. Wholesale Market Reform

The physical grid exists, but the **market design** is fragmented and inefficient.

- **The Problem of Self-Scheduling:** Most power is tied up in long-term contracts where discoms “self-schedule” their own contracted plants. Only **7% to 9%** of electricity is traded on organized power exchanges.
- **MBED (Market-Based Economic Dispatch):** This proposed reform would create a nationwide centralized framework. It ensures the “cheapest” power (like renewables with zero marginal cost) is dispatched first across the whole country.
 - **Impact:** Estimated savings of **\$1.6 billion** annually in procurement costs and better renewable integration.
- **Captive Power Plants:** Integrating these large, underutilized private power sources into the wholesale market would increase competition and liquidity.

5. Conclusion

The energy transition transforms discoms from **passive intermediaries** (simply passing power through) into **active optimisers** (balancing demand and supply in real-time). The success of the transition depends on public perception:

- If integration leads to **better service quality**, support will grow.
- If it leads to **uncertainty or instability**, resistance to green energy will increase.

4. 35% BIG PROJECTS ISSUES DUE TO LAND ACQUISITION

About to news

CONTEXT: The article discusses how **35% of delays** in India's major infrastructure projects are caused by land acquisition hurdles, though the government maintains it will not change existing laws to preserve democratic consent. It highlights the **PRAGATI framework** as the primary tool for resolving these bottlenecks through high-level coordination and direct oversight by the Prime Minister.

1. Understanding the PRAGATI Framework

PRAGATI (Pro-Active Governance and Timely Implementation) is a digital platform designed to speed up stalled projects. It functions as a monthly “check-in” where the Prime Minister directly interacts with state and central officials.

- **Financial Scope:** It monitors projects worth over **₹500 crore**.
- **Total Reach:** In the last decade, it has reviewed over **3,300 projects** worth a total of **₹85 lakh crore**.
- **Goal:** To resolve “coordination gaps” between different levels of government (Local, State, and Central).

2. Major Bottlenecks in Infrastructure

Large-scale projects (like highways and railways) rarely fail due to lack of money; they usually stall because of “Right of Way” and environmental issues.

Issue Category	Impact Percentage
Land Acquisition	35%
Forest / Wildlife / Environmental	20%
Right of Use / Way	18%

Why is Land Acquisition the biggest issue? In a democracy, the government cannot simply seize property. It must follow the **Land Acquisition Law**, which involves:

1. **Compensation:** Paying landowners a fair price.
2. **Consent:** Ensuring people agree to the relocation.

Rehabilitation: Helping displaced families find new homes or livelihoods.

3. Democracy vs. Speed of Execution:

The Cabinet Secretary highlights a fundamental trade-off. Some non-democratic countries may build infrastructure faster because they can “throw people out of their land.”

However, the Indian government's stance is:

- **Consultation & Consent:** Faster implementation is not worth sacrificing public involvement.
- **Balance:** Development must coexist with environmental protection and individual rights.

No Law Change: The government believes the current law is necessary to protect citizens, even if it leads to slower progress.

4. Data Analysis: The “PM-Reviewed” Projects

The Prime Minister personally oversees a subset of high-priority projects. The data shows high efficiency in this category:

- **Projects Reviewed:** 382
- **Issues Raised:** 3,187
- **Issues Resolved:** 2,958 (approx. **93% success rate**)

Top Sectors Involved:

1. **Roads & Highways:** 114 projects
2. **Railways:** 109 projects
3. **Power:** 54 projects

5. Critical Takeaway: Chronic Delays

The report mentions the Jammu-Udhampur-Srinagar-Baramulla rail link. Work began in 1995, yet it is still being discussed in meetings today. This illustrates how geography, security, and land issues can turn a project into a multi-decade endeavor, emphasizing why a “monitoring mechanism” like PRAGATI is required to finally bring these projects to completion.

5. HOW RICE FARMERS CAN CUT METHANE AND MAKE MONEY OUT OF IT

This article discusses how Indian rice farmers can transition from traditional continuous flooding to Alternate Wetting and Drying (AWD) to significantly reduce methane emissions. It highlights a business model where these verified emission reductions are sold as carbon credits, providing a new income stream for smallholders.

Decarbonizing the Paddy Field**1. The Environmental Problem: Methane (\$CH₄\$)**

- **The Root Cause:** Conventional rice farming involves “continuous flooding” (CF) to suppress weeds.
- **The Biological Process:** Submerging fields 4–5 cm deep creates an **anaerobic (oxygen-free)** soil environment.
- **The Culprits:** Methanogenic microbes (archaea and bacteria) decompose organic matter in these oxygen-free conditions.

The Greenhouse Effect: This process produces methane, which has 28 times the global warming potential of \$CO₂\$ over a 100-year period.

2. The Technological Solution: Alternate Wetting and Drying (AWD)

The article highlights AWD as a “low effort, high impact” practice suitable for India’s 86% of small/marginal farmers.

- **Disrupting the Cycle:** Periodic drying of fields stops the anaerobic conditions required by methane-producing microbes.

- **The Protocol:** * Flood the field for the first 20 days.
 - ◆ For the next 45 days, implement two “dry-downs” of 6 days each.
 - ◆ Drain water to 10–15 cm below the soil surface during these windows.
- **Growth Stages:** Flooding is most critical during the first 65 days; after this, the crop moves into the reproductive stage (panicle formation), and constant flooding is less necessary.

3. The Business Model: Turning Carbon into Cash

The most innovative part of the lesson is how climate tech startups like **Mitti Labs** monetize these savings.

- **Direct Measurement:** Acrylic chambers are placed in fields to collect gas samples, which are analyzed via gas chromatography to verify actual emissions reductions.
- **Carbon Credits:** Verified reductions (in \$CO₂\$ equivalent) are sold as carbon credits on domestic and international markets.
- **The Market Value:** *Credits trade at **\$15–\$25 per tonne** of \$CO₂\$ equivalent.

- ◆ A single hectare of AWD rice can generate roughly **2.5 tonnes** of \$CO₂\$ savings.
- ◆ This earns the farmer at least **\$37.5 (over ₹3,300)** per hectare per crop.

- **The Buyers:** Large industries (airlines, data centers) buy these to offset their emissions and reach “net-zero” targets.

4. Scaling and Industry Impact

- **Rapid Growth:** Mitti Labs is scaling from 11,300 farmers in 2024-25 to an expected **69,000 farmers** across five Indian states by 2025-26.
- **Collaborative Efforts:** The **Good Rice Alliance** (Bayer, Shell, GenZero) is also promoting AWD and “direct seeding,” which bypasses the nursery and transplanting stages to further reduce the carbon footprint.

Strategic Importance: Since India is the world’s top rice producer and exporter, these changes have global climate implications.

